3.3.32 \(\int \frac {(a+a \sin (c+d x))^4}{(e \cos (c+d x))^{13/2}} \, dx\) [232]

3.3.32.1 Optimal result
3.3.32.2 Mathematica [C] (verified)
3.3.32.3 Rubi [A] (verified)
3.3.32.4 Maple [B] (verified)
3.3.32.5 Fricas [C] (verification not implemented)
3.3.32.6 Sympy [F(-1)]
3.3.32.7 Maxima [F]
3.3.32.8 Giac [F(-1)]
3.3.32.9 Mupad [F(-1)]

3.3.32.1 Optimal result

Integrand size = 25, antiderivative size = 169 \[ \int \frac {(a+a \sin (c+d x))^4}{(e \cos (c+d x))^{13/2}} \, dx=-\frac {2 a^4 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{77 d e^6 \sqrt {e \cos (c+d x)}}+\frac {4 a^7 \sqrt {e \cos (c+d x)}}{11 d e^7 (a-a \sin (c+d x))^3}-\frac {2 a^8 \sqrt {e \cos (c+d x)}}{77 d e^7 \left (a^2-a^2 \sin (c+d x)\right )^2}-\frac {2 a^8 \sqrt {e \cos (c+d x)}}{77 d e^7 \left (a^4-a^4 \sin (c+d x)\right )} \]

output
-2/77*a^4*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/ 
2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)/d/e^6/(e*cos(d*x+c))^(1/2)+4/11*a^7 
*(e*cos(d*x+c))^(1/2)/d/e^7/(a-a*sin(d*x+c))^3-2/77*a^8*(e*cos(d*x+c))^(1/ 
2)/d/e^7/(a^2-a^2*sin(d*x+c))^2-2/77*a^8*(e*cos(d*x+c))^(1/2)/d/e^7/(a^4-a 
^4*sin(d*x+c))
 
3.3.32.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.14 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.39 \[ \int \frac {(a+a \sin (c+d x))^4}{(e \cos (c+d x))^{13/2}} \, dx=\frac {4 \sqrt [4]{2} a^4 \operatorname {Hypergeometric2F1}\left (-\frac {11}{4},-\frac {1}{4},-\frac {7}{4},\frac {1}{2} (1-\sin (c+d x))\right ) (1+\sin (c+d x))^{11/4}}{11 d e (e \cos (c+d x))^{11/2}} \]

input
Integrate[(a + a*Sin[c + d*x])^4/(e*Cos[c + d*x])^(13/2),x]
 
output
(4*2^(1/4)*a^4*Hypergeometric2F1[-11/4, -1/4, -7/4, (1 - Sin[c + d*x])/2]* 
(1 + Sin[c + d*x])^(11/4))/(11*d*e*(e*Cos[c + d*x])^(11/2))
 
3.3.32.3 Rubi [A] (verified)

Time = 0.80 (sec) , antiderivative size = 176, normalized size of antiderivative = 1.04, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {3042, 3149, 3042, 3159, 3042, 3160, 3042, 3162, 3042, 3121, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sin (c+d x)+a)^4}{(e \cos (c+d x))^{13/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a \sin (c+d x)+a)^4}{(e \cos (c+d x))^{13/2}}dx\)

\(\Big \downarrow \) 3149

\(\displaystyle \frac {a^8 \int \frac {(e \cos (c+d x))^{3/2}}{(a-a \sin (c+d x))^4}dx}{e^8}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a^8 \int \frac {(e \cos (c+d x))^{3/2}}{(a-a \sin (c+d x))^4}dx}{e^8}\)

\(\Big \downarrow \) 3159

\(\displaystyle \frac {a^8 \left (\frac {4 e \sqrt {e \cos (c+d x)}}{11 a d (a-a \sin (c+d x))^3}-\frac {e^2 \int \frac {1}{\sqrt {e \cos (c+d x)} (a-a \sin (c+d x))^2}dx}{11 a^2}\right )}{e^8}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a^8 \left (\frac {4 e \sqrt {e \cos (c+d x)}}{11 a d (a-a \sin (c+d x))^3}-\frac {e^2 \int \frac {1}{\sqrt {e \cos (c+d x)} (a-a \sin (c+d x))^2}dx}{11 a^2}\right )}{e^8}\)

\(\Big \downarrow \) 3160

\(\displaystyle \frac {a^8 \left (\frac {4 e \sqrt {e \cos (c+d x)}}{11 a d (a-a \sin (c+d x))^3}-\frac {e^2 \left (\frac {3 \int \frac {1}{\sqrt {e \cos (c+d x)} (a-a \sin (c+d x))}dx}{7 a}+\frac {2 \sqrt {e \cos (c+d x)}}{7 d e (a-a \sin (c+d x))^2}\right )}{11 a^2}\right )}{e^8}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a^8 \left (\frac {4 e \sqrt {e \cos (c+d x)}}{11 a d (a-a \sin (c+d x))^3}-\frac {e^2 \left (\frac {3 \int \frac {1}{\sqrt {e \cos (c+d x)} (a-a \sin (c+d x))}dx}{7 a}+\frac {2 \sqrt {e \cos (c+d x)}}{7 d e (a-a \sin (c+d x))^2}\right )}{11 a^2}\right )}{e^8}\)

\(\Big \downarrow \) 3162

\(\displaystyle \frac {a^8 \left (\frac {4 e \sqrt {e \cos (c+d x)}}{11 a d (a-a \sin (c+d x))^3}-\frac {e^2 \left (\frac {3 \left (\frac {\int \frac {1}{\sqrt {e \cos (c+d x)}}dx}{3 a}+\frac {2 \sqrt {e \cos (c+d x)}}{3 d e (a-a \sin (c+d x))}\right )}{7 a}+\frac {2 \sqrt {e \cos (c+d x)}}{7 d e (a-a \sin (c+d x))^2}\right )}{11 a^2}\right )}{e^8}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a^8 \left (\frac {4 e \sqrt {e \cos (c+d x)}}{11 a d (a-a \sin (c+d x))^3}-\frac {e^2 \left (\frac {3 \left (\frac {\int \frac {1}{\sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 a}+\frac {2 \sqrt {e \cos (c+d x)}}{3 d e (a-a \sin (c+d x))}\right )}{7 a}+\frac {2 \sqrt {e \cos (c+d x)}}{7 d e (a-a \sin (c+d x))^2}\right )}{11 a^2}\right )}{e^8}\)

\(\Big \downarrow \) 3121

\(\displaystyle \frac {a^8 \left (\frac {4 e \sqrt {e \cos (c+d x)}}{11 a d (a-a \sin (c+d x))^3}-\frac {e^2 \left (\frac {3 \left (\frac {\sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{3 a \sqrt {e \cos (c+d x)}}+\frac {2 \sqrt {e \cos (c+d x)}}{3 d e (a-a \sin (c+d x))}\right )}{7 a}+\frac {2 \sqrt {e \cos (c+d x)}}{7 d e (a-a \sin (c+d x))^2}\right )}{11 a^2}\right )}{e^8}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a^8 \left (\frac {4 e \sqrt {e \cos (c+d x)}}{11 a d (a-a \sin (c+d x))^3}-\frac {e^2 \left (\frac {3 \left (\frac {\sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 a \sqrt {e \cos (c+d x)}}+\frac {2 \sqrt {e \cos (c+d x)}}{3 d e (a-a \sin (c+d x))}\right )}{7 a}+\frac {2 \sqrt {e \cos (c+d x)}}{7 d e (a-a \sin (c+d x))^2}\right )}{11 a^2}\right )}{e^8}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {a^8 \left (\frac {4 e \sqrt {e \cos (c+d x)}}{11 a d (a-a \sin (c+d x))^3}-\frac {e^2 \left (\frac {2 \sqrt {e \cos (c+d x)}}{7 d e (a-a \sin (c+d x))^2}+\frac {3 \left (\frac {2 \sqrt {e \cos (c+d x)}}{3 d e (a-a \sin (c+d x))}+\frac {2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a d \sqrt {e \cos (c+d x)}}\right )}{7 a}\right )}{11 a^2}\right )}{e^8}\)

input
Int[(a + a*Sin[c + d*x])^4/(e*Cos[c + d*x])^(13/2),x]
 
output
(a^8*((4*e*Sqrt[e*Cos[c + d*x]])/(11*a*d*(a - a*Sin[c + d*x])^3) - (e^2*(( 
2*Sqrt[e*Cos[c + d*x]])/(7*d*e*(a - a*Sin[c + d*x])^2) + (3*((2*Sqrt[Cos[c 
 + d*x]]*EllipticF[(c + d*x)/2, 2])/(3*a*d*Sqrt[e*Cos[c + d*x]]) + (2*Sqrt 
[e*Cos[c + d*x]])/(3*d*e*(a - a*Sin[c + d*x]))))/(7*a)))/(11*a^2)))/e^8
 

3.3.32.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3149
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[(a/g)^(2*m)   Int[(g*Cos[e + f*x])^(2*m + p)/( 
a - b*Sin[e + f*x])^m, x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2 
, 0] && IntegerQ[m] && LtQ[p, -1] && GeQ[2*m + p, 0]
 

rule 3159
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[2*g*(g*Cos[e + f*x])^(p - 1)*((a + b*Sin[e + f 
*x])^(m + 1)/(b*f*(2*m + p + 1))), x] + Simp[g^2*((p - 1)/(b^2*(2*m + p + 1 
)))   Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 2), x], x] /; 
FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0] && LeQ[m, -2] && GtQ[p, 1] & 
& NeQ[2*m + p + 1, 0] &&  !ILtQ[m + p + 1, 0] && IntegersQ[2*m, 2*p]
 

rule 3160
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[b*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x 
])^m/(a*f*g*(2*m + p + 1))), x] + Simp[(m + p + 1)/(a*(2*m + p + 1))   Int[ 
(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, 
f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && NeQ[2*m + p + 1, 0] & 
& IntegersQ[2*m, 2*p]
 

rule 3162
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[b*((g*Cos[e + f*x])^(p + 1)/(a*f*g*(p - 1)*(a + b*S 
in[e + f*x]))), x] + Simp[p/(a*(p - 1))   Int[(g*Cos[e + f*x])^p, x], x] /; 
 FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] &&  !GeQ[p, 1] && Intege 
rQ[2*p]
 
3.3.32.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(582\) vs. \(2(177)=354\).

Time = 15.88 (sec) , antiderivative size = 583, normalized size of antiderivative = 3.45

method result size
default \(\frac {2 \left (32 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (\sin ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+32 \left (\sin ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-80 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-64 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+80 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+176 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-40 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-144 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+10 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+176 \left (\sin ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-78 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-176 \left (\sin ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{4}}{77 \left (32 \left (\sin ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-80 \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+80 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-40 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+10 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) e +e}\, e^{6} d}\) \(583\)
parts \(\text {Expression too large to display}\) \(1058\)

input
int((a+a*sin(d*x+c))^4/(e*cos(d*x+c))^(13/2),x,method=_RETURNVERBOSE)
 
output
2/77/(32*sin(1/2*d*x+1/2*c)^10-80*sin(1/2*d*x+1/2*c)^8+80*sin(1/2*d*x+1/2* 
c)^6-40*sin(1/2*d*x+1/2*c)^4+10*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c) 
/(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2)/e^6*(32*(sin(1/2*d*x+1/2*c)^2)^(1/2)* 
EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin 
(1/2*d*x+1/2*c)^10+32*sin(1/2*d*x+1/2*c)^10*cos(1/2*d*x+1/2*c)-80*(sin(1/2 
*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+ 
1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^8-64*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1 
/2*c)^8+80*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/ 
2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^6+176*sin(1/2*d*x+ 
1/2*c)^6*cos(1/2*d*x+1/2*c)-40*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos( 
1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c 
)^4-144*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+10*(sin(1/2*d*x+1/2*c)^2)^ 
(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/ 
2)*sin(1/2*d*x+1/2*c)^2+176*sin(1/2*d*x+1/2*c)^5-78*sin(1/2*d*x+1/2*c)^2*c 
os(1/2*d*x+1/2*c)-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^ 
(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-176*sin(1/2*d*x+1/2*c)^3-12*si 
n(1/2*d*x+1/2*c))*a^4/d
 
3.3.32.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 253, normalized size of antiderivative = 1.50 \[ \int \frac {(a+a \sin (c+d x))^4}{(e \cos (c+d x))^{13/2}} \, dx=-\frac {{\left (-3 i \, \sqrt {2} a^{4} \cos \left (d x + c\right )^{2} + 4 i \, \sqrt {2} a^{4} + {\left (i \, \sqrt {2} a^{4} \cos \left (d x + c\right )^{2} - 4 i \, \sqrt {2} a^{4}\right )} \sin \left (d x + c\right )\right )} \sqrt {e} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (3 i \, \sqrt {2} a^{4} \cos \left (d x + c\right )^{2} - 4 i \, \sqrt {2} a^{4} + {\left (-i \, \sqrt {2} a^{4} \cos \left (d x + c\right )^{2} + 4 i \, \sqrt {2} a^{4}\right )} \sin \left (d x + c\right )\right )} \sqrt {e} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 2 \, {\left (a^{4} \cos \left (d x + c\right )^{2} + 3 \, a^{4} \sin \left (d x + c\right ) + 11 \, a^{4}\right )} \sqrt {e \cos \left (d x + c\right )}}{77 \, {\left (3 \, d e^{7} \cos \left (d x + c\right )^{2} - 4 \, d e^{7} - {\left (d e^{7} \cos \left (d x + c\right )^{2} - 4 \, d e^{7}\right )} \sin \left (d x + c\right )\right )}} \]

input
integrate((a+a*sin(d*x+c))^4/(e*cos(d*x+c))^(13/2),x, algorithm="fricas")
 
output
-1/77*((-3*I*sqrt(2)*a^4*cos(d*x + c)^2 + 4*I*sqrt(2)*a^4 + (I*sqrt(2)*a^4 
*cos(d*x + c)^2 - 4*I*sqrt(2)*a^4)*sin(d*x + c))*sqrt(e)*weierstrassPInver 
se(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + (3*I*sqrt(2)*a^4*cos(d*x + c)^2 
 - 4*I*sqrt(2)*a^4 + (-I*sqrt(2)*a^4*cos(d*x + c)^2 + 4*I*sqrt(2)*a^4)*sin 
(d*x + c))*sqrt(e)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c 
)) + 2*(a^4*cos(d*x + c)^2 + 3*a^4*sin(d*x + c) + 11*a^4)*sqrt(e*cos(d*x + 
 c)))/(3*d*e^7*cos(d*x + c)^2 - 4*d*e^7 - (d*e^7*cos(d*x + c)^2 - 4*d*e^7) 
*sin(d*x + c))
 
3.3.32.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \sin (c+d x))^4}{(e \cos (c+d x))^{13/2}} \, dx=\text {Timed out} \]

input
integrate((a+a*sin(d*x+c))**4/(e*cos(d*x+c))**(13/2),x)
 
output
Timed out
 
3.3.32.7 Maxima [F]

\[ \int \frac {(a+a \sin (c+d x))^4}{(e \cos (c+d x))^{13/2}} \, dx=\int { \frac {{\left (a \sin \left (d x + c\right ) + a\right )}^{4}}{\left (e \cos \left (d x + c\right )\right )^{\frac {13}{2}}} \,d x } \]

input
integrate((a+a*sin(d*x+c))^4/(e*cos(d*x+c))^(13/2),x, algorithm="maxima")
 
output
integrate((a*sin(d*x + c) + a)^4/(e*cos(d*x + c))^(13/2), x)
 
3.3.32.8 Giac [F(-1)]

Timed out. \[ \int \frac {(a+a \sin (c+d x))^4}{(e \cos (c+d x))^{13/2}} \, dx=\text {Timed out} \]

input
integrate((a+a*sin(d*x+c))^4/(e*cos(d*x+c))^(13/2),x, algorithm="giac")
 
output
Timed out
 
3.3.32.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sin (c+d x))^4}{(e \cos (c+d x))^{13/2}} \, dx=\int \frac {{\left (a+a\,\sin \left (c+d\,x\right )\right )}^4}{{\left (e\,\cos \left (c+d\,x\right )\right )}^{13/2}} \,d x \]

input
int((a + a*sin(c + d*x))^4/(e*cos(c + d*x))^(13/2),x)
 
output
int((a + a*sin(c + d*x))^4/(e*cos(c + d*x))^(13/2), x)